
 

 
 

Working Paper 08-11 Departamento de Estadística 
Statistic and Econometric Series 04 Universidad Carlos III de Madrid 
March 2008 Calle Madrid, 126 
 28903 Getafe (Spain) 
 Fax (34-91) 6249849 
 

BOOTSTRAP PREDICTION INTERVALS IN STATE SPACE 
MODELS∗ 

 
Alejandro Rodriguez1 and Esther Ruiz 2  

 

Abstract 
 
 
Prediction intervals in State Space models can be obtained by assuming Gaussian innovations and 
using the prediction equations of the Kalman filter, where the true parameters are substituted by 
consistent estimates. This approach has two limitations. First, it does not incorporate the 
uncertainty due to parameter estimation. Second, the Gaussianity assumption of future innovations 
may be inaccurate. To overcome these drawbacks, Wall and Stoffer (2002) propose to obtain 
prediction intervals by using a bootstrap procedure that requires the backward representation of 
the model. Obtaining this representation increases the complexity of the procedure and limits its 
implementation to models for which it exists. The bootstrap procedure proposed by Wall and 
Stoffer (2002) is further complicated by fact that the intervals are obtained for the prediction errors 
instead of for the observations. In this paper, we propose a bootstrap procedure for constructing 
prediction intervals in State Space models that does not need the backward representation of the 
model and is based on obtaining the intervals directly for the observations. Therefore, its 
application is much simpler, without loosing the good behavior of bootstrap prediction intervals. 
We study its finite sample properties and compare them with those of the standard and the Wall 
and Stoffer (2002) procedures for the Local Level Model. Finally, we illustrate the results by 
implementing the new procedure to obtain prediction intervals for future values of a real time 
series. 
 
 
Keywords: Backward representation, Kalman filter, Local Level Model, Unobserved Components. 
 
 
 
 

                                                           
∗ Financial support from Project SEJ2006-03919 by the Spain government is gratefully acknowledged. The usual disclaims apply. 

 1 Department of Statistics, Universidad Carlos III de Madrid, e-mail: afrodrig@est-econ.uc3m.es.  
2 Department of Statistics, Universidad Carlos III de Madrid, e-mail: ortega@est-econ.uc3m.es. 
 



Bootstrap Prediction Intervals in
State Space Models

Alejandro Rodriguez and Esther Ruiz∗†

March 2008

Abstract

Prediction intervals in State Space models can be obtained by assum-
ing Gaussian innovations and using the prediction equations of the Kalman
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by fact that the intervals are obtained for the prediction errors instead of
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to obtain prediction intervals for future values of a real time series.

Keywords: Backward representation, Kalman filter, Local Level Model, Unobserved Com-
ponents.

∗Corresponding author, Department of Statistics, Universidad Carlos III de Madrid, e-mail:
ortega@est-econ.uc3m.es.
†Financial support from Project SEJ2006-03919 by the Spain government is gratefully ac-

knowledged. The usual disclaims apply.



Rodriguez & Ruiz 2

1 Introduction

When analyzing economic and financial time series, sometimes it is useful to

decompose them into latent components such as, for example, trend, seasonal,

cyclic and irregular component which have a direct interpretation; see Harvey

(1989) and Durbin and Koopman (2001) for extensive descriptions of Unobserved

Component models. The empirical applications of these models are very wide; for

instance, the evolution of inflation could be represented by a model with long-run

level, seasonal and transitory components; see, for example, Ball et al. (1990),

Evans (1991), Kim (1993) and Broto and Ruiz (2006). Cavaglia (1992) analyzes

the dynamic behavior of ex-ante real interest differentials across countries by a

linear model in which the ex-post real interest differential is expressed as the ex-

ante real interest differential (underlying unobserved component) plus the cross

country differential inflation forecast error. When modelling financial returns, the

volatility can also be modelled as an unobserved component as in the Stochastic

Volatility (SV) models proposed by Taylor (1982) and popularized by Harvey et al.

(1994).

The parameters of models with unobserved components can be estimated by

Quasi-Maximum Likelihood (QML) by casting the model in the State Space (SS)

form and using the Kalman filter to obtain the one-step ahead prediction error

expression of the Gaussian likelihood. Once the parameters have been estimated,

the unknown parameters can be substituted by the corresponding QML estimates,

so that the filter provides estimations and predictions of the unobserved compo-

nents. It also delivers future predictions of the series of interest together with

their corresponding mean square errors (MSE). However, these MSEs are based

on assuming known parameters and Gaussian errors. Therefore, the correspond-

ing prediction intervals may be inaccurate, because they do not incorporate the

variability due to parameter estimation, and also, because the Normal distribution

could be different from the true one. In the context of ARIMA models several,

authors propose to use bootstrap procedures to construct prediction intervals that

overcome these limitations. The seminal paper in this area is Thombs and Schu-
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cany (1990) who propose a bootstrap procedure to obtain prediction intervals for

AR(p) models based on estimating directly the distribution of the conditional

predictions. They propose to incorporate the uncertainty due to parameter esti-

mation by generating bootstrap replicates of the observed series and estimating

parameters in each of them. All bootstrap replicates have the same last p values

and, consequently, the procedure of Thombs and Schucany (1990) requires the

use of the backward representation of the model. The need of this representa-

tion complicates computationally the procedure and limits its implementation to

models with it. On the other hand, Pascual et al. (2004) show that when trying

to incorporate parameter uncertainty in prediction intervals, there is not need of

fixing the last p observations of each bootstrap replicate. They only fix the last

p observations to obtain bootstrap replicates of future values of the series but

the estimated parameters are bootstrapped without fixing any observation in the

sample. Consequently, the backward representation is unnecessary, which simpli-

fies the construction of bootstrap prediction intervals and allows to extend the

procedure to models without such representation.

Unlike ARIMA models, models with unobserved components may have sev-

eral disturbances. Therefore, the bootstrap procedures proposed by Thombs and

Schucany (1990) and Pascual et al. (2004) cannot be directly applied to them.

However, the innovation form of SS models has only one disturbance. Conse-

quently, Wall and Stoffer (2002) propose using it to obtain prediction intervals for

future observations. However, as in Thombs and Schucany (1990), the bootstrap

procedure proposed by Wall and Stoffer (2002) requires the use of the backward

representation. Furthermore, its implementation is complicated by the fact that

the bootstrap density of the prediction errors is obtained in two steps. First, the

density that takes into account the parameter estimation uncertainty is obtained

and then the density that takes into in account the variability of future inno-

vations. Finally, these two densities are combined in the overall density of the

prediction errors that is itself used to obtain the density of future observations.

They show that their procedure works well in the context of Gaussian SS models.

Moreover, Pfeffermann and Tiller (2005) show that the bootstrap estimator of the
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underlying unobserved component based on the innovation form is asymptotically

consistent. However, it is computationally complicated to implement in practice

and to extend to more general models the bootstrap procedure proposed by Wall

and Stoffer (2002). Alternatively, following Pascual et al. (2004), in this paper

we propose a bootstrap procedure to obtain directly prediction intervals of future

observations in SS models that does not require the backward representation. As

in Wall and Stoffer (2002), our proposed bootstrap procedure is based on the in-

novation form of SS models. We show that the new procedure has the advantage

of being much simpler without loosing the good behavior of bootstrap prediction

intervals. The finite sample behavior of the new intervals is compared with in-

tervals based on the standard Kalman filter and on the Wall and Stoffer (2002)

procedure in the context of Gaussian and non-Gaussian linear SS models.

The rest of the paper is organized as follows. Section 2 describes the Kalman

filter, the innovation representation and the construction of prediction intervals.

Section 3 deals with the construction of bootstrap prediction intervals in SS mod-

els. We first describe the procedure proposed by Wall and Stoffer (2002) (WS)

and then the new procedure proposed in this paper. Section 4 analyzes the finite

sample properties of the new procedure by means of Monte Carlo experiments.

They are then compared with those of the standard and WS prediction intervals.

Section 5 presents an application of the new bootstrap procedure to a real time

series. Section 6 concludes the paper with our conclusions and some suggestions

for future research.

2 State Space Models and the Kalman Filter

Consider the following SS model,

yt = Z tαt + d t + εt, (1a)

αt = T tαt−1 + ct + Rtηt, t = 1, . . . , T. (1b)

where yt is a univariate time series observed at time t, Z t is a 1×m vector, d t is

a scalar and εt is a serially uncorrelated disturbance with zero mean and variance
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H t. On the other hand, αt is the m × 1 vector of unobservable state variables,

T t is an m×m matrix, ct is an m× 1 vector, Rt is an m× g matrix and ηt is a

g × 1 vector of serially uncorrelated disturbances with zero mean and covariance

matrix Q t. Finally, the disturbances εt and ηt are uncorrelated with each other

in all time periods. The system matrices {Z t,T t,Q t,H t,Rt, ct,d t} are assumed

to be time-invariant and the subindex t is dropped from them. The specification

of the SS system is completed with the initial state vector, α0, which has mean

a0 and covariance matrix P0.

The Kalman filter is a recursive algorithm for estimating the state vector, αt,

and its MSE based on the information available at time t. These estimates are

given by the following updating equations

at = at|t−1 + Pt|t−1Z
′F−1
t vt, (2a)

Pt = Pt|t−1 − Pt|t−1Z
′F−1
t ZPt|t−1, (2b)

where at|t−1 and Pt|t−1 are the one-step ahead prediction of the state and its MSE

which given by the following prediction equations

at|t−1 = Tat−1 + c (2c)

Pt|t−1 = TPt−1T
′ + RQR′. (2d)

Finally, vt = yt − d − Zat|t−1 is the innovation and Ft is its variance given by

Ft = ZPt|t−1Z’ + H . When the model in (1) is time-invariant the Kalman filter

converges to a steady state with covariance matrices Pt|t−1 = P and Pt = aP ,

where a is a constant, and Ft = F ; see Anderson and Moore (1979) and Harvey

(1989).

If the model is conditionally Gaussian, then at = E
t
[αt], where the t under the

expectation means that it is conditional on the information available at time t,

and has minimum MSE. However, if the conditional Gaussianity assumption is

not fulfilled, the filter provides estimates with minimum MSE among the linear

estimators. Finally, if the initial conditions are not given as a part of the model

specification, then, it is possible to initialize the filter via one of the following
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approaches. First, when the state is generated by a stationary process, the filter

can be initialized by the marginal mean and variance of the state. When the state

is non stationary, we can assume that α0 has a diffuse distribution with zero mean

and covariance matrix P0 = kIm, where k −→∞, which is equivalent to using the

first observations of the series as initial values. Also, in the non stationary case, it

is also possible to assume that the initial state, α0, is fixed, i.e. its distribution is

degenerated with P0 = 0. In this case, its elements must be estimated by treating

them as unknown parameters in the model; see, for instance, Harvey (1989) for

more details.

Although, the SS model in (1) has several disturbances, it is possible to express

it in what is known as the Innovation Form (IF) which has a unique disturbance

yt = Zat|t−1 + d + vt. (3a)

Combining equations (2c) and (2a) it is straightforward to see that

at+1|t = Tat|t−1 + c + KF
−1
vt, (3b)

where K = TPZ ′. Equations (3a) and (3b) conform the IF.

As an illustration, consider the Local Level model given by

yt = µt + εt, εt ∼ IID(0, σ2
ε), (4a)

µt = µt−1 + ηt, ηt ∼ IID(0, qσ2
ε), (4b)

where the unobserved state, αt, is the level of the series, denoted by µt, that

evolves over time following a random walk. In this model Z = T = R = 1,

c = d = 0, H = σ2
ε and Q = qσ2

ε , where q is known as the signal to noise ratio.

The corresponding IF is given by

yt = mt|t−1 + vt, (5a)

mt+1|t = mt|t−1 +

(
P

F

)
vt, (5b)

where F = P + σ2
ε . Finally, if the initial conditions are assumed to be given by
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a diffuse distribution, then the filter can be initialized using the first observation,

i.e. m1|0 = y1 and P1|0 = σ2
ε .

After the last observation is available, the Kalman filter can still be run without

the updating equations, in (2a) and (2b). In this case, the k-step ahead predictions

of the underlying unobserved components are given by

aT+k|T = T kaT +
k−1∑
j=0

T jc, k = 1, 2, . . . , (6a)

while the associated MSE matrix is given by

PT+k|T =
(
T k
)
PT
(
T k
)′

+
k−1∑
j=0

[(
T j
)
RQR′

(
T j
)′]

, k = 1, 2, . . . , (6b)

where PT = P . The k-step ahead prediction of yT+k is given by

ỹT+k|T = ZaT+k|T + d , k = 1, 2, . . . , (7a)

with prediction MSE given by

MSE(ỹT+k|T ) ≡ FT+k|T = ZPT+k|TZ’ + H , k = 1, 2, . . . . (7b)

Consequently, assuming that future prediction errors are Normally distributed,

prediction intervals for yT+k are given by

[
ỹT+k|T − z1−α/2

√
FT+k|T , ỹT+k|T + z1−α/2

√
FT+k|T

]
, (8)

where z1−α/2 is the
(
1− α

2

)
-percentile of the Standard Normal distribution; see,

for example, Durbin and Koopman (2001).

The point prediction ỹT+k|T and its MSE in (7a) and (7b) respectively, are

obtained assuming known parameters. However, in practice, the unknown pa-

rameters are substituted by consistent estimates. In this paper, we consider the

QML estimator due to its well known asymptotic properties; see, for example,

Harvey (1989) and Durbin and Koopman (2001). Hence, denoting by Ẑ , d̂ and

Ĥ the system of matrices where the parameters have been substituted by their
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QML estimates, the k-step ahead prediction of yT+k is given by

ŷT+k|T = Ẑ âT+k|T + d̂ (9a)

with estimated MSE given by

ˆMSE
(
ŷT+k|T

)
= F̂T+k|T = Ẑ P̂ Ẑ

′
+ Ĥ (9b)

where âT+k|T , P̂ given by the filter run with QML estimates. Consequently, in

practice, the prediction intervals for future values of yt are given by[
ŷT+k|T − z1−α/2

√
F̂T+k|T , ŷT+k|T + z1−α/2

√
F̂T+k|T

]
. (10)

We call the interval in (10) as standard (ST).

Note that the MSE in (9b) does not take into in account the uncertainty due

to parameter estimation and therefore, the corresponding prediction intervals, in

(10), underestimate, in general, the variability of the forecasting error. Moreover,

these intervals could have inaccurate coverage when the prediction errors are not

Gaussian.

Consider again the local level model. In this case, the estimated predictions

of future observations, yT+k, are given by

ŷT+k|T = m̂T , k = 1, 2, . . . , (11a)

with MSE

F̂T+k|T = P̂ + kq̂σ̂2
ε + σ̂2

ε . (11b)

Finally, the ST prediction interval for yT+k is[
m̂T − z1−α/2

√
P̂ + σ̂2

ε (1 + kq̂), m̂T + z1−α/2

√
P̂ + σ̂2

ε (1 + kq̂)

]
. (12)
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3 Bootstrap Prediction Intervals in State Space

Models

In this section we describe the bootstrap procedure proposed by Wall and Stoffer

(2002) for constructing prediction intervals in SS models. Then, we propose a new

simpler procedure which avoids using the backward representation and obtains

directly the intervals of future observations.

3.1 The Wall Stoffer Procedure

Wall and Stoffer (2002) propose to use bootstrap procedures to construct pre-

diction intervals for future values of series modeled by linear SS models. Their

procedure is based on the IF in (3) that only has one disturbance. Following

Thombs and Schucany (1990), they propose to use the backward SS represen-

tation to generate bootstrap replicates of the series with fixed last observations.

These replicates are used to incorporate in the density of the prediction errors, the

uncertainty due to parameter estimation. Then, they obtain the density of the

prediction errors constructed when considering that the parameters are fixed. Fi-

nally, combining both densities, they obtain the density of the conditional forecast

errors and use it for constructing the corresponding bootstrap prediction interval.

Next, we describe in detail the Wall and Stoffer (2002) procedure.

The backward representation of SS models is based on the IF in (3). To

simplify the procedure, we consider that d = c = 0. Let’s define vst = vt√
F
, t =

1, . . . , T, the standardized innovations. The following equations represent the

backward recursion of the SS model in (1)

yt = N tτt+1 − Ltat|t−1 + M tv
s
t , t = T − 1, . . . , 1, (13a)

τt = T ′τt+1 + Atat|t−1 −B tv
s
t , t = T − 1, . . . , 1, (13b)

where τt is the reverse time estimate of the state vector with τT = V −1
T aT |T−1.

The matrices in the backward recursions are given by N t = ZV tT
′+FK

′
, Lt =

F
1/2

B ′t − ZV tAt, M t = F
1/2

C t − ZV tB t, At = V −1
t − T ′V −1

t+1T , B t =
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T ′V −1
t+1K

F
1/2
, C t = I −F 1/2

K
′
V −1

t+1KF
1/2
, and V t+1 = TV tT

′+KFK
′
. These matri-

ces are computed together with the forward Kalman filter with V 1 = E
[
a1|0a

′
1|0

]
.

Consider again the local level model. Its backward representation is given by

yt = Ntrt+1 − Ltmt|t−1 +Mtv
s
t , t = T − 1, . . . , 1, (14a)

rt = rt+1 + Atmt|t−1 −Btv
s
t , t = T − 1, . . . , 1, (14b)

where τT = V −1
T mT |T−1, Nt = Vt + FP , Lt = F

1/2
Bt − VtAt, Mt = F

1/2
Ct −

VtBt, At = V −1
t − V −1

t+1, Bt = V −1
t+1PF

1/2
, Ct = 1 − FP 2

V −1
t+1, Vt+1 = Vt + FP

2
,

and V1 = P .

Notice that, as explained before, in practice the parameters are unknown and,

consequently, the backward recursion in (13) should be carried out by substituting

the unknown parameters by the corresponding QML estimates. In this case, the

backward estimates of the state are denoted by τ̂t for t = 1, . . . , T .

The WS algorithm to obtain bootstrap prediction intervals of yT+k consists on

the following steps:

Step 1: Estimate the parameters of model (1) by QML, θ̂, and construct the

standardized innovations {v̂st ; 1 ≤ t ≤ T}.

Step 2: Construct a sequence of bootstrap standardized innovations {v̂s∗t ; 1 ≤ t ≤ T+

K} via random draws with replacement from the standardized innova-

tions, v̂st , with v̂∗sT = v̂sT .

Step 3: Construct a bootstrap replicate of the series, {y∗t ; 1 ≤ t ≤ T − 1} via the

backward SS model, in (13), with estimated parameters, θ = θ̂, using the

innovations {v̂s∗t ; 1 ≤ t ≤ T − 1} and keeping y∗T = yT fixed. Estimate the

parameters of the model in order to obtain a bootstrap replicate, θ̂∗, of

them.

Step 4: Generate conditional forecasts
{
y∗T+k|T ; 1 ≤ k ≤ K

}
via the IF estimated
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parameters and bootstrap errors

a∗T+k|T = T̂
k
âT |T−1 +

k−1∑
j=0

T̂k−1−jK̂F̂
−1

v̂∗T+j, (15a)

y∗T+k|T = Ẑ T̂
k
âT |T−1

+ Ẑ
k−1∑
j=0

T̂k−1−jK̂F̂
−1

v̂∗T+j + v̂∗T+k, k = 1, . . . , . (15b)

Step 5: Construct the conditional forecast values
{
ŷ∗T+k|T ; 1 ≤ k ≤ K

}
via the IF

with bootstrap parameters and future errors equal to zero, i.e.

â∗T+k|T = T̂
∗k

âT |T−1 (16a)

ŷ∗T+k|T = Ẑ
∗
T̂
∗k

âT |T−1, k = 1, . . . , . (16b)

where â∗T |T−1 = âT |T−1

Step 6: Finally, compute the bootstrap forecast error by

d∗k = y∗T+k|T − ŷ∗T+k|T , for k = 1, 2, . . . , K .

Steps 2 to 6 are repeated B times.

Notice that this procedure does not approximate directly the conditional distri-

bution of yT+k but the distribution of the prediction errors. In step 4 the bootstrap

replicates y∗T+k|T are constructed using the estimated parameters. They incorpo-

rate the uncertainty due to the fact that when predicting, future innovations are

equal to zero while in fact they are not. However these bootstrap replicates do

not incorporate the uncertainty due to parameter estimation. Then, in step 5 the

bootstrap replicates ŷ∗T+k|T incorporate the variability attributable to parameter

estimation through the use of θ̂∗ instead of θ̂. However, in ŷ∗T+k|T , future innova-

tions are assumed to be zero. Finally, the conditional bootstrap prediction errors,

d∗k, are computed as the difference between y∗T+k|T − ŷ∗T+k|T . The corresponding

prediction intervals, denoted by WS, are centered at the point prediction ỹT+k.
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They are given by [
ỹT+k|T + Q∗α/2,d∗k , ỹT+k|T + Q∗1−α/2,d∗k

]
(17)

where Q∗α/2,d∗k is the α
2
-percentile of the empirical conditional bootstrap distribu-

tion of the k-step ahead prediction errors of yT+k.

3.2 A New Bootstrap Procedure

Our proposal is to construct bootstrap prediction intervals approximating the

conditional distribution of yT+k by the distribution of bootstrap replicates that

incorporate simultaneously the variability due to parameter estimation and the

uncertainty due to unknown future innovations without using the backward filter.

The proposed procedure consists on the following steps:

Step 1: Estimate the parameters of model (1) by QML, θ̂, and obtain the stan-

dardized innovations {v̂st ; 1 ≤ t ≤ T}.

Step 2: Construct a sequence of bootstrap standardized innovations

{v̂s∗t ; 1 ≤ t ≤ T +K} via random draws with replacement from the stan-

dardized innovations, v̂st .

Step 3: Compute a bootstrap replicate {ŷ∗t ; 1 ≤ t ≤ T} by means of the IF in (3)

using v̂s∗t and the estimated parameters, θ̂. Estimate the corresponding

bootstrap parameters, θ̂∗. Next, run the Kalman filter with θ̂∗ in order to

obtain bootstrap replicates of the state vector at time T which incorporate

the uncertainty due to parameter estimation, â∗T |T−1.

Step 4: Obtain the conditional bootstrap predictions
{
ŷ∗T+k|T ; 1 ≤ k ≤ K

}
by the
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following expressions

â∗T+k|T = T̂
∗k

â∗T |T−1 +
k−1∑
j=0

T̂∗k−1−jK̂
∗
F̂
∗−1

v̂∗T+j,

ŷ∗T+k|T = Ẑ
∗
T̂
∗k

â∗T |T−1

+ Ẑ
∗
k−1∑
j=0

T̂∗k−1−jK̂
∗
F̂
∗−1

v̂∗T+j + v̂∗T+k, k = 1, . . . ,

where ŷ∗T = yT .

Steps 2 to 4 are repeated B times.

The empirical distribution of ŷ∗T+k|T incorporates both the variability due to

unknown future innovations and the variability due to parameter estimation in

just one step. The procedure above, denoted as State Space Bootstrap (SSB),

has three advantages over the WS procedure. First, it does not require to use

the backward representation. Second, it is simpler as a unique set of bootstrap

replicates of future observations is required instead of two as in the WS procedure.

Third, unlike the WS procedure, in step 5, we do not fix â∗T |T−1 = âT |T−1 because

this value depends on the estimated parameters, and therefore it should be allowed

to vary among bootstrap replicates in order to incorporate the uncertainty due to

parameter estimation.

Finally, bootstrap prediction intervals are constructed directly by the per-

centile method1. Hence, bootstrap prediction intervals are given by[
Q∗α/2,ŷ∗

T+k|T
, Q∗1−α/2,ŷ∗

T+k|T

]
(18)

where Q∗α/2,ŷ∗
T+k|T

is the α
2
-percentile of the empirical bootstrap distribution of the

k-step ahead prediction of yT+k.

4 Finite Sample Properties

In this section, we analyze the finite sample properties of the SSB prediction

intervals and compare them with those of the ST and WS intervals when the

series are generated by the local level model in (4).
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Simulation results are based on R = 1000 replicates of series of sizes T =

50, 100 and 500. The parameters of the model have been chosen to cover a wide

range of different situations from cases in which the noise is large relative to the

signal, i.e. q is small, to cases in which q is large. In particular, we consider

q = {0.1, 1, 2}. With respect to the disturbances, we consider two distributions,

Gaussian and a centered and re-scaled Chi-square with 1 degree of freedom2, χ2
(1).

For each simulated series, {yr1, . . . , yrT}, r = 1, 2, . . . , R, we first generate B = 1000

observations of yrT+k for prediction horizons k = 1, 5 and 15, and then obtain, 95%

prediction intervals computed using, the ST intervals in (12), the WS intervals in

(17) and the SSB intervals in (18). Finally, we compute the coverage of each of

these intervals as well as the length and the percentage of observations left out on

the right size and on the left size of the limits of the prediction intervals3.
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Table 1 reports the Monte Carlo averages of these quantities when both dis-

turbances are Gaussian, and the predictions are calculated for k = 1, 5 and 15

prediction horizons. The table shows that the three procedures are very similar.

The SSB procedure seems to be slightly better specially when the sample size is

small and the prediction horizon increases. This result is illustrated in Figure

1 that plots kernel estimates of the ST, WS and SSB densities for the 15-steps

ahead predictions for one particular series generated by each of the three models

considered with T = 50, 100 and 500 together with the empirical density. Note

that when the signal to noise ratio is small, i.e. q = 0.1, the SSB procedure seems

to be more similar to the empirical densities than the other procedures.

Table 2, that reports the results when εt is χ2
(1) and ηt is Gaussian, shows

that the mean coverage of the ST intervals is close to the nominal. However,

they are not able of dealing with the asymmetry in the distribution of εt. The

average coverage in the left tail is smaller than in the right tail. The difference

between the coverage in both tails is larger in the model with q = 0.1 where

the signal is relatively small with respect to the noise which has a non-Gaussian

distribution. Note that the lack of capability of the ST intervals to deal with the

asymmetry in the distribution of εt is larger the larger the sample size. On the

other hand, the coverages of the WS and SSB intervals are rather similar with

SSB being slightly closer to the nominal, for almost all models and sample sizes

considered. Both bootstrap intervals are able to cope with the asymmetry of the

distribution of εt. Consequently, according to the results reported in Table 2,

using the much simpler SSB method does not imply a worse performance of the

prediction intervals. Figure 2 illustrates these results plotting the kernel density

of the simulated yT+1 together with the ST, WS and SSB densities obtained with

a particular series generated by each of the models and sample sizes considered.

This figure also illustrates the lack of fit of the ST density when q = 0.1 and 1.

On the other hand, the shapes of the WS and SSB densities are similar, with SSB

being always closer to the empirical.
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5 Application

We illustrate the performance of the proposed procedure to construct bootstrap

prediction intervals by implementing it on the standardized quarterly mortgages

change in home equity debt outstanding, unscheduled payments, observed from

1st quarter of 1991 to the 2nd quarter of 2007 (Mortgages). The series is plotted in

the panel (a) of Figure 3, which shows that it is not stationary. Its first differences

are plotted in panel (b) together with its correlogram and partial correlogram, in

panel (c). The pattern of the sample correlations and the partial correlations

suggests that a moving average process of order one may represent adequately

the dependence on the first differences of the series. Consequently, the local

level model in (4) could be adequate for fitting the series of Mortgages. On the

other hand, Table 3 reports several descriptive statistics for the first differences

of Mortgages. This series shows excess of kurtosis and positive asymmetry with a

non-Gaussian distribution reflected in small p-values for the Jarque-Bera and the

Lilliefors tests for Normality.

Table 3: Descriptive statistics

Series ∆ (Mortgage)
(USD billions)

Sample Size 65
Mean 0.02
Standard Dev. 0.65
Skewness 0.38
Kurtosis 4.16
Jarque-Bera (p-value) 0.008
Lillilifors (p-value) 0.004
Q(20)(p-value) 0.750

We use the observations from the 1st quarter of 1991 up to the 1st quarter of

2001, T = 61, for fitting the model, leaving the rest of them for evaluating the

sample forecast performance of the procedure.

The QML estimates of the parameters are given by σ̂2
ε = 0.126 and q̂ = 0.671.

These estimates are used for running the Kalman filter, to obtain estimates the
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(a)

(b) (c)

Figure 3: (a) The Mortgages series. (b) First difference of Mortgages. (c) Sample
Autocorrelation and Partial-Autocorrelation of the first difference of the Mort-
gages data.

innovations and their variances. Figure 4 plots the correlogram and a kernel

estimates of the density of the within sample standardized one-step ahead errors.

The correlations and partial correlations are not any longer significant. However,

the density of the errors suggests that they are obviously far from Normality.

Therefore, the local level model seems appropriate to represent the dependencies

in the conditional mean of the Mortgages series although for predicting future

values it is convenient to implement a procedure that takes into in account the

non-Normality of the errors. We construct prediction intervals up to 5 steps ahead

using the ST, WS and SSB procedures. The resulting intervals are plotted in Fig-

ure 5 together with the observed values of the Mortgages series. First, observe

that the two bootstrap procedures generate very similar intervals which are wider
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(a) (b)

Figure 4: (a) Sample Autocorrelation and Partial-Autocorrelation of standardized
one-step ahead error. (b) Empirical density and histogram for the standardized
one-step ahead error.

than the ST intervals, as expected given that they incorporate the uncertainty

due to parameter estimation. For two prediction horizons, the observations corre-

sponding to the 2nd quarter of 2006 and the 1st quarter of 2007, fall outside the

ST prediction interval. However, both bootstrap procedures still contain these two

values. It is important to note that although bootstrap procedures are computa-

tional intensive, in this application with B = 2000 bootstrap replicates, the BSS

procedure requires 110 seconds using a MATLAB algorithm in an AMD Athlon

2.00GHz processor of a PC desktop with 2.00Gb of RAM. However, the Wall and

Stoffer (2002) bootstrap procedure requires 160 seconds. There is a reduction of

31% in the computer time required.

6 Conclusion

This paper proposes a new procedure to obtain bootstrap prediction intervals

in the context of State Space models. Bootstrap intervals are of great interest

when predicting future values of a series of interest as they are able to incorporate

parameter uncertainty and do not rely on any particular assumption on the error

distribution. Wall and Stoffer (2002) propose a bootstrap procedure to obtain
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Figure 5: Bootstrap and standard prediction intervals for the out of sample fore-
casting evaluation for Mortgage series.

the density of the prediction errors in two steps. First, the uncertainty due to

parameter estimation is taken into in account and then the uncertainty due to the

distribution of the prediction error is considered. Furthermore, their procedure is

implemented using the backward representation of the model in order to keep fixed

the last observations of the series when bootstrapping the parameter estimates.

The procedure proposed in this paper has three advantages. First, it is based

on obtaining directly the density of future observations instead of the density

of the errors. Furthermore, this density is obtained in one single step that in-

corporate simultaneously the uncertainty due to the parameters estimation and

the uncertainty due to the error distribution. Finally and more important, the

bootstrap procedure proposed in this paper does not rely on the backward repre-

sentation. As a consequence, our procedure is much simpler from a computational

point of view and can be extended to models without a backward representation.

We analyze the small sample behavior of the proposed bootstrap intervals and

compare it with those of the intervals proposed by Wall and Stoffer (2002) and the

intervals based on assuming known parameters and a Normal distribution of the

errors. We show that our procedure, although much simpler, has slightly better

properties than the bootstrap intervals of Wall and Stoffer (2002). As expected,
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we also show that bootstrap intervals are more adequate than standard intervals

mainly in the presence of non-Normal errors. In general, the standard intervals

are thinner than expected to have the nominal coverage and cannot deal with

asymmetries.

Finally, our proposed bootstrap procedure to obtain prediction intervals in

State Space models is illustrated by implementing it to obtain intervals for future

values of a series of Mortgages modelled by the local level model. We show that

there is an important improvement in terms of computer time when implementing

our proposed procedure with respect to implementing the procedure proposed by

Wall and Stoffer (2002).

When fitting State Space models to represent the dynamic evolution of a time

series, it is often of interest to obtain prediction not only of future values of the

series but also of future values of the unobserved states. We are also working on

the adequacy of the proposed bootstrap prediction intervals when implemented

with this goal. A issue left for further research is the implementation of the

proposed procedure when the system of matrices are time-varying.
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Notes

1We try alternative methods as the bias-corrected and the acceleration bias-corrected with
similar results; see Efron (1987) for a definition of these intervals.

2We are particularly interested in dealing with this distribution due to its relation with
the linear transformation of the Autoregressive Stochastic Volatility Model; see, for instance,
Harvey et al. (1994). Results for other distributions are similar and are not reported to save
space. Available for the authors upon request.

3All, simulation, estimation and prediction has been done with programs developed by the
authors using the software MATLAB, version 7.2.
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